
Package: npcure (via r-universe)
August 27, 2024

Version 0.1-5

Date 2020-02-28

Title Nonparametric Estimation in Mixture Cure Models

Author Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut],
Maria Amalia Jácome [aut]

Maintainer Ignacio López-de-Ullibarri

<ignacio.lopezdeullibarri@udc.es>

Depends R (>= 3.5.0)

Suggests KMsurv

Description Performs nonparametric estimation in mixture cure models,
and significance tests for the cure probability. For details,
see López-Cheda et al. (2017a) <doi:10.1016/j.csda.2016.08.002>
and López-Cheda et al. (2017b) <doi:10.1007/s11749-016-0515-1>.

License GPL (>= 2)

Imports permute, stats, utils, zoo

NeedsCompilation yes

Encoding UTF-8

Date/Publication 2020-02-29 10:10:02 UTC

Repository https://iullibarri.r-universe.dev

RemoteUrl https://github.com/cran/npcure

RemoteRef HEAD

RemoteSha 207ddbdce49f07a97b5f7c5c62926933a33b3fd6

Contents
npcure-package . 2
beran . 3
berancv . 6
controlpars . 9
hpilot . 11

1

https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1007/s11749-016-0515-1

2 npcure-package

latency . 12
latencyhboot . 16
print.npcure . 19
probcure . 20
probcurehboot . 23
summary.npcure . 26
testcov . 28
testmz . 30

Index 33

npcure-package Nonparametric Estimation in Mixture Cure Models

Description

Performs nonparametric estimation in mixture cure models, and significance tests for the cure prob-
ability. For details, see López-Cheda et al. (2017a) <doi:10.1016/j.csda.2016.08.002> and López-
Cheda et al. (2017b) <doi:10.1007/s11749-016-0515-1>.

Details

Index of help topics:

beran Compute Beran's Estimator of the Conditional
Survival

berancv Compute the Cross-Validation Bandwidth for
Beran's Estimator of the Conditional Survival

controlpars Control Values for the Bootstrap or
Cross-validation

hpilot Compute the Pilot Bandwidth for the
Nonparametric Estimators of Cure Probability
and Latency

latency Compute Nonparametric Estimator of the
Conditional Latency

latencyhboot Compute the Bootstrap Bandwidth for the
Nonparametric Estimator of the Latency

npcure-package Nonparametric Estimation in Mixture Cure Models
print.npcure Print Method for Objects of Class 'npcure'
probcure Compute Nonparametric Estimator of the

Conditional Probability of Cure
probcurehboot Compute the Bootstrap Bandwidth for the

Nonparametric Estimator of the Cure Probability
summary.npcure Summary Method for Objects of Class 'npcure'
testcov Covariate Significance Test of the Cure

Probability
testmz Test of Maller-Zhou

beran 3

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

López-Cheda, A., Cao, R., Jácome, M. A., Van Keilegom, I. (2017). Nonparametric incidence
estimation and bootstrap bandwidth selection in mixture cure models. Computational Statistics &
Data Analysis 105: 144–165. https://doi.org/10.1016/j.csda.2016.08.002.

López-Cheda, A., Jácome, M. A., Cao, R. (2017). Nonparametric latency estimation for mixture
cure models. Test, 26: 353–376. https://doi.org/10.1007/s11749-016-0515-1.

beran Compute Beran’s Estimator of the Conditional Survival

Description

This function computes the Beran nonparametric estimator of the conditional survival function.

Usage

beran(x, t, d, dataset, x0, h, local = TRUE, testimate = NULL,
conflevel = 0L, cvbootpars = if (conflevel == 0 && !missing(h)) NULL
else controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator.

dataset An optional data frame in which the variables named in x, t and d are inter-
preted. If it is missing, x, t and d must be objects of the workspace.

x0 A numeric vector of covariate values where the survival estimates will be com-
puted.

h A numeric vector of bandwidths. If it is missing the default is to use the cross-
validation bandwidth computed by the berancv function.

local A logical value, TRUE by default, specifying whether local or global bandwidths
are used.

https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1007/s11749-016-0515-1

4 beran

testimate A numeric vector specifying the times at which the survival is estimated. By
default it is NULL, and then the survival is estimated at the times given by t.

conflevel A value controlling whether bootstrap confidence intervals (CI) of the survival
are to be computed. With the default value, 0L, the CIs are not computed. If a
numeric value between 0 and 1 is passed, it specifies the confidence level of the
CIs.

cvbootpars A list of parameters controlling the bootstrap when computing the CIs of the
survival: B, the number of bootstrap resamples, and nnfrac, the fraction of the
sample size that determines the order of the nearest neighbor used for choosing a
pilot bandwidth. If h is missing the list of parameters is extended to be the same
used for computing the cross-validation bandwidth (see the help of berancv for
details). The default is the value returned by the controlpars function called
without arguments. In case the CIs are not computed and h is not missing the
default is NULL.

Details

This function computes the kernel type product-limit estimator of the conditional survival function
S(t|x) = P (Y > t|X = x) under censoring, using the Nadaraya-Watson weights. The kernel used
is the Epanechnikov. If the smoothing parameter h is not provided, then the cross-validation band-
width selector in Geerdens et al. (2018) is used. The function is available only for one continuous
covariate X .

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant string "survival".

local The value of the local argument.

h The value of the h argument, unless this is missing, in which case its value is
that of the cross-validation bandwidth.

x0 The value of the x0 argument.

testim The numeric vector of time values where the survival function is estimated.

S A list whose components are the estimates of the survival function for each one
of the covariate values, i.e., those specified by the x0 argument. The survival
estimates are given at the times determined by the testimate argument.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical re-
port, University of California, Berkeley.

Geerdens, C., Acar, E. F., Janssen, P. (2018). Conditional copula models for right-censored clus-
tered event time data. Biostatistics, 19(2): 247-262. https://doi.org/10.1093/biostatistics/
kxx034.

https://doi.org/10.1093/biostatistics/kxx034
https://doi.org/10.1093/biostatistics/kxx034

beran 5

See Also

controlpars, berancv

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Survival estimates for covariate values 0, 0.5 using...
... (a) global bandwidths 0.3, 0.5, 1.
By default, the estimates are computed at the observed times
x0 <- c(0, .5)
S1 <- beran(x, t, d, data, x0 = x0, h = c(.3, .5, 1), local = FALSE)

Plot predicted survival curves for covariate value 0.5
plot(S1$testim, S1$S$h0.3$x0.5, type = "s", xlab = "Time", ylab =
"Survival", ylim = c(0, 1))
lines(S1$testim, S1$S$h0.5$x0.5, type = "s", lty = 2)
lines(S1$testim, S1$S$h1$x0.5, type = "s", lty = 3)
The true survival curve is plotted for reference
p0 <- exp(2*x0[2])/(1 + exp(2*x0[2]))
lines(S1$testim, 1 - p0 + p0*pweibull(S1$testim, shape = .5*(x0[2] + 4),
lower.tail = FALSE), col = 2)
legend("topright", c("Estimate, h = 0.3", "Estimate, h = 0.5",
"Estimate, h = 1", "True"), lty = c(1:3, 1), col = c(rep(1, 3), 2))

As before, but with estimates computed at fixed times 0.1, 0.2,...,1
S2 <- beran(x, t, d, data, x0 = x0, h = c(.3, .5, 1), local = FALSE,
testimate = .1*(1:10))

... (b) local bandwidths 0.3, 0.5.
Note that the length of the covariate vector x0 and the bandwidth h
must be the same.
S3 <- beran(x, t, d, data, x0 = x0, h = c(.3, .5), local = TRUE)

... (c) the cross-validation (CV) bandwidth selector (the default
when the bandwidth argument is not provided).
The CV bandwidth is searched in a grid of 150 bandwidths (hl = 150)
between 0.2 and 2 times the standardized interquartile range
of the covariate values (hbound = c(.2, 2)).
95% confidence intervals are also given.
S4 <- beran(x, t, d, data, x0 = x0, conflevel = .95, cvbootpars =
controlpars(hl = 150, hbound = c(.2, 2)))

6 berancv

Plot of predicted survival curve and confidence intervals for
covariate value 0.5
plot(S4$testim, S4$S$x0.5, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))
lines(S4$testim, S4$conf$x0.5$lower, type = "s", lty = 2)
lines(S4$testim, S4$conf$x0.5$upper, type = "s", lty = 2)
lines(S4$testim, 1 - p0 + p0 * pweibull(S4$testim, shape = .5*(x0[2] +
4), lower.tail = FALSE), col = 2)
legend("topright", c("Estimate with CV bandwidth", "95% CI limits",
"True"), lty = c(1, 2, 1), col = c(1, 1, 2))

Example with the dataset 'bmt' in the 'KMsurv' package
to study the survival of patients aged 25 and 40.
data("bmt", package = "KMsurv")
x0 <- c(25, 40)
S <- beran(z1, t2, d3, bmt, x0 = x0, conflevel = .95)
Plot of predicted survival curves and confidence intervals
plot(S$testim, S$S$x25, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))
lines(S$testim, S$conf$x25$lower, type = "s", lty = 2)
lines(S$testim, S$conf$x25$upper, type = "s", lty = 2)
lines(S$testim, S$S$x40, type = "s", lty = 1, col = 2)
lines(S$testim, S$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S$testim, S$conf$x40$upper, type = "s", lty = 2, col = 2)
legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",
"Age 40: Estimate", "Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

berancv Compute the Cross-Validation Bandwidth for Beran’s Estimator of the
Conditional Survival

Description

This function computes the cross-validation bandwidth for Beran’s estimator of the conditional
survival function.

Usage

berancv(x, t, d, dataset, x0, cvpars = controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

berancv 7

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator in the data frame.

dataset An optional data frame in which the variables named in x, t and indicator
are interpreted. If it is missing, x, t and indicator must be objects of the
workspace.

x0 A numeric vector of covariate values where the local cross-validation bandwidth
will be computed.

cvpars A list of parameters controlling the process of bandwidth selection. The default
is the value returned by the controlpars function called without arguments.
See the help for controlpars for details.

Details

The cross-validation (CV) bandwidth is taken as the largest local minimizer of the leave-one-out
cross-validated criterion in Geerdens et al. (2018). Let F (−i)(t|xi), i = 1, . . . , n be the Beran
estimator obtained using the data points (xj , tj , dj), j = 1, . . . , i − 1, i + 1, . . . , n. For the CV
criterion, the differences I(ti ≤ tj) − F (−i)(tj |xi) are computed only for the so-called ’useful
pairs’ of observed times (ti, tj). A pair (Ti, Tj) is useful if the value of the indicator I(Ti ≤ Tj)
gives an unambiguous correct value for the indicator I(Yi ≤ Yj) which contains the corresponding
true (possibly unknown) event times, see Geerdens et al. (2018) for details. Gannoun et al. (2007)
apply a similar criterion to perform bandwidth selection for the Beran estimator, but they consider
only the pairs of true (uncensored) event times. Note that the inclusion of useful pairs of observed
times would be especially advantageous if the censoring rate is high.

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant character string c("Cross-validation bandwidth", "survival").

x0 Grid of covariate values.

h Selected local cross-validation bandwidths.

hgrid Grid of bandwidths used (optional).

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Gannoun, A., Saracco, J., Yu, K. (2007). Comparison of kernel estimators of conditional distribu-
tion function and quantile regression under censoring. Statistical Modeling, 7: 329-344. https:
//doi.org/10.1177/1471082X0700700404.

https://doi.org/10.1177/1471082X0700700404
https://doi.org/10.1177/1471082X0700700404

8 berancv

Geerdens, C., Acar, E. F., Janssen, P. (2018). Conditional copula models for right-censored clus-
tered event time data. Biostatistics, 19(2): 247-262. https://doi.org/10.1093/biostatistics/
kxx034.

See Also

beran, controlpars, hpilot

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Computation of cross-validation (CV) local bandwidth for Beran's
estimator of survival for covariate values 0, 1, ...
... with the default control parameters (passed through 'cvpars')
x0 <- c(0, 1)
hcv <- berancv(x, t, d, data, x0 = x0)

... changing the default 'cvpars' by calling the 'controlpars()'
function:
(a) the CV local bandwidth is searched in a grid of 150 bandwidths
('hl = 150') between 0.2 and 4 times the standardized interquartile
range of the covariate values of x ('hbound = c(.2, 4'))
(b) all the grid bandwidths are saved ('hsave = TRUE')
hcv <- berancv(x, t, d, data, x0 = x0, cvpars = controlpars(hbound =
c(.2, 4), hl = 150, hsave = TRUE))

Survival estimates for covariate values 0, 1, with CV local bandwidth
S1 <- beran(x, t, d, data, x0 = x0, h = hcv$h)
Plot predicted survival curves for covariate values 0, 1
plot (S1$testim, S1$S$x0, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))
lines(S1$testim, S1$S$x1, type = "s", lty = 2)
The survival curves are displayed for reference
p0 <- exp(2*x0)/(1 + exp(2*x0))
lines(S1$testim, 1 - p0[1] + p0[1]*pweibull(S1$testim, shape = .5*(x0[1]
+ 4), lower.tail = FALSE), col = 2)
lines(S1$testim, 1 - p0[2] + p0[2]*pweibull(S1$testim, shape = .5*(x0[2]
+ 4), lower.tail = FALSE), lty = 2, col = 2)
legend("topright", c("Estimate, x = 0", "True, x = 0",
"Estimate, x = 1", "True, x = 1"), lty = c(1, 1, 2, 2), col = 1:2)

https://doi.org/10.1093/biostatistics/kxx034
https://doi.org/10.1093/biostatistics/kxx034

controlpars 9

Example with the dataset 'bmt' of the 'KMsurv' package to study the
survival of patients aged 25 and 40.
data("bmt", package = "KMsurv")
x0 <- c(25, 40)
hcv <- berancv(z1, t2, d3, bmt, x0 = x0, cvpars = controlpars(hbound =
c(.2, 4), hl = 150, hsave = TRUE))
S <- beran(z1, t2, d3, bmt, x0 = x0, h = hcv$h, conflevel = .95)
Plot of predicted survival curves and confidence intervals
plot(S$testim, S$S$x25, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))
lines(S$testim, S$conf$x25$lower, type = "s", lty = 2)
lines(S$testim, S$conf$x25$upper, type = "s", lty = 2)
lines(S$testim, S$S$x40, type = "s", lty = 1, col = 2)
lines(S$testim, S$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S$testim, S$conf$x40$upper, type = "s", lty = 2, col = 2)
legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",
"Age 40: Estimate", "Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

controlpars Control Values for the Bootstrap or Cross-validation

Description

This function returns a list of values for the control parameters of the functions of the package that
use the bootstrap or cross-validation.

Usage

controlpars(B = 999L, hbound = c(0.1, 3), hl = 100L, hsave =
FALSE, nnfrac = 0.25, fpilot = NULL, qt = 0.75, hsmooth = 1L, ...)

Arguments

B An integer giving the number of bootstrap resamples.

hbound A numeric vector of length 2 specifying the minimum (default, 0.1) and maxi-
mum (default, 3), respectively, of the initial grid of bandwidths as a multiple of
the standardized interquartile range of the covariate values.

hl A numeric value giving the length of the initial grid of bandwidths. The default
is 100.

hsave A logical value specifying if the grids of bandwidths must be saved as a com-
ponent of the list returned by the berancv, latencyboot and probcurehboot
functions. The default is FALSE.

nnfrac A numeric value giving the fraction of the sample size that determines the order
of the nearest neighbor used when choosing the pilot bandwidth. The default is
0.25.

10 controlpars

fpilot A function name or NULL. If NULL, the default, the hpilot function is used for
computing a pilot bandwidth in case that one is needed. If not NULL, it must be
the name of a user-defined function (given as a function name or as a character
string). This function must necessarily have an argument x0, playing the same
role than in hpilot, and must return a value of the same length than x0. If
fpilot has more arguments, they are passed through the ... argument (see
below).

qt In bandwidth selection for the latency estimator (see latencyhboot), a numeric
value specifiying the order of a quantile of the observed times. It determines the
right boundary of the integration interval in the computation of the ISE (the left
boundary is 0). The default is 0.75 (third quartile).

hsmooth An integer. Its value controls whether the bandwidths selected by the latencyhboot
and probcurehboot and berancv function should be smoothed, and, if so, the
degree of smoothing. The smoothing consists in computing a centered mov-
ing average of the unsmoothed vector of bandwidths returned by default by
latencyhboot and probcurehboot. The value of hsmooth is the number of
terms used to compute the average. The default is 1L, which means that no
smoothing is done.

... Arguments of fpilot, if fpilot is not NULL.

Details

The output of controlpars is a list of control parameters required by the package functions which
use the bootstrap or cross-validation. This is mainly the case of the berancv function, which com-
putes a cross-validation bandwidth for Beran’s estimator of survival, and of the latencyhboot and
probcurehboot functions, which compute the bootstrap bandwidth selectors of the estimators of
the latency and the probability of cure, respectively. Since these functions are indirectly called by,
respectively, the beran, latency and probcure functions when their h argument is missing, the
output of controlpars is also the expected (and default) way of passing to them the parameters for
bandwidth selection.

Additionally, controlpars is used by beran, latency and probcure to set the number of boot-
strap resamples and the value of nnfrac (see above) when confidence intervals are computed. The
testcov function also uses it for setting the number of bootstrap resamples.

Value

A list whose components are the arguments of the function, their defaults being replaced with the
values the function was called with.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

See Also

beran,berancv, hpilot, latency, latencyhboot, probcure, probcurehboot,testcov

hpilot 11

hpilot Compute the Pilot Bandwidth for the Nonparametric Estimators of
Cure Probability and Latency

Description

This function computes local pilot bandwidths for the nonparametric estimators of the probability
of cure and the latency function.

Usage

hpilot(x, x0, nnfrac = 0.25)

Arguments

x A numeric vector of observed covariate values.

x0 A numeric vector specifying a grid of covariate values.

nnfrac A numeric value giving the fraction of the sample size that determines the or-
der of the nearest neighbor. This is taken as floor(length(x)*nnfrac). The
default is 0.25.

Details

The function computes a data-driven local pilot bandwidth, required for the bootstrap bandwidth
selector of the nonparametric estimators of the cure rate and latency functions. Simulations in
López-Cheda et al. (2017) show that the choice of pilot bandwidth has small effect on the boot-
strap bandwidth. This pilot bandwidth only depends on the sample size and the distribution of the
covariate x (see López-Cheda, 2018):

g(x0) = 0.5(d+k (x0) + d−k (x0))(100/n)
1/9

where d+k (x0) and d−k (x0) are the distances from x0 to the k-th nearest neighbor on the right and
the left, respectively, and k is a suitable integer depending on the sample size n. If there are not at
least k neighbors on the right or on the left, we use d+k (x0) = d−k (x0). The default value of k is
n/4. The order n−1/9 satisfies the conditions in Theorem 1 of Li and Datta (2001) and coincides
with the order obtained by Cao and González-Manteiga (1993) for the uncensored case.

Value

A numeric vector of local pilot bandwidths corresponding to each one of the values of the grid of
covariate values given by x0.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

12 latency

References

Cao R., González-Manteiga W. (1993). Bootstrap methods in regression smoothing. Journal of
Nonparametric Statistics, 2: 379-388. https://doi.org/10.1080/10485259308832566.

Li, G., Datta, S. (2001). A bootstrap approach to nonparametric regression for right censored data.
Annals of the Institute of Statistical Mathematics, 53(4): 708-729. https://doi.org/10.1023/A:
1014644700806.

López-Cheda A. (2018). Nonparametric Inference in Mixture Cure Models. PhD dissertation,
Universidade da Coruña. Spain.

López-Cheda, A., Cao, R., Jácome, M. A., Van Keilegom, I. (2017). Nonparametric incidence
estimation and bootstrap bandwidth selection in mixture cure models. Computational Statistics &
Data Analysis, 105: 144–165. https://doi.org/10.1016/j.csda.2016.08.002.

López-Cheda, A., Jácome, M. A., Cao, R. (2017). Nonparametric latency estimation for mixture
cure models. TEST, 26: 353–376. https://doi.org/10.1007/s11749-016-0515-1.

See Also

controlpars, latencyhboot, probcurehboot

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Computing pilot bandwidths for covariate values -1, -0.8, ..., 1
by taking the 5-th nearest neighbor
hpilot(data$x, x0 = seq(-1, 1, by = .2), nnfrac = .05)

latency Compute Nonparametric Estimator of the Conditional Latency

Description

This function computes the nonparametric estimator of the conditional latency function proposed
by López-Cheda et al. (2017).

https://doi.org/10.1080/10485259308832566
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1007/s11749-016-0515-1

latency 13

Usage

latency(x, t, d, dataset, x0, h, local = TRUE, testimate = NULL,
conflevel = 0L, bootpars = if (conflevel == 0 && !missing(h)) NULL else
controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1.
Ifdataset is a data frame, it is interpreted as the name of the variable corre-
sponding to the uncensoring indicator.

dataset An optional data frame in which the variables named in x, t and d are inter-
preted. If it is missing, x, t and d must be objects of the workspace.

x0 A numeric vector of covariate values where the latency estimates will be com-
puted.

h A numeric vector of bandwidths. If it is missing the default is to use the local
bootstrap bandwidth computed by the latencyhboot function.

local A logical value, TRUE by default, specifying whether local or global bandwidths
are used.

testimate A numeric vector specifying the times at which the latency is estimated. By
default it is NULL, and then the latency is estimated at the times given by t.

conflevel A value controlling whether bootstrap confidence intervals (CI) of the latency
are to be computed. With the default value, 0L, the CIs are not computed. If a
numeric value between 0 and 1 is passed, it specifies the confidence level of the
CIs.

bootpars A list of parameters controlling the bootstrap when computing the CIs of the
latency: B, the number of bootstrap resamples, and nnfrac, the fraction of the
sample size that determines the order of the nearest neighbor used for choosing a
pilot bandwidth. If h is missing the list of parameters is extended to be the same
used for computing the bootstrap bandwidth (see the help of latencyhboot for
details). The default is the value returned by the controlpars function called
without arguments. In case the CIs are not computed and h is not missing the
default is NULL.

Details

The function computes the nonparametric estimator of the conditional latency S0(t|X = x0) =
P (Y > t|Y < ∞, X = x0) proposed by López-Cheda et al. (2017). It is only available for a
continuous covariate X .

14 latency

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant string "latency".

local The value of the local argument.

h The value of the h argument, unless this is missing, in which case its value is
that of the cross-validation bandwidth.

x0 The value of the x0 argument.

testim The numeric vector of time values where the latency function is estimated.

S A list whose components are the estimates of the latency function for each one
of the covariate values, i.e., those specified by the x0 argument. The latency
estimates are given at the times determined by the testimate argument.

conf A list of components lower and upper giving the lower and the upper limits of
the confidence intervals, respectively.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

López-Cheda, A., Jácome, M. A., Cao, R. (2017). Nonparametric latency estimation for mixture
cure models. Test, 26: 353–376. https://doi.org/10.1007/s11749-016-0515-1.

See Also

controlpars, latencyhboot

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Latency estimates for covariate value 0.5...
x0 <- .5

... (a) with global bandwidths 0.5, 1, 2.
By default, estimates are computed at the time values of 't'
S1 <- latency(x, t, d, data, x0 = x0, h = c(.5, 1, 2), local = FALSE)
plot(S1$testim, S1$S$h0.5$x0.5, type = "s", xlab = "Time", ylab =

https://doi.org/10.1007/s11749-016-0515-1

latency 15

"Latency", ylim = c(0, 1))
lines(S1$testim, S1$S$h1$x0.5, type = "s", lty = 2)
lines(S1$testim, S1$S$h2$x0.5, type = "s", lty = 3)
The true latency curve is plotted as reference
lines(S1$testim, pweibull(S1$testim, shape = .5*(x0 + 4), lower.tail =
FALSE), col = 2)
legend("topright", c(paste("Estimate, ", c("h = 0.5", "h = 1",
"h = 2")), "True"), lty = c(1:3, 1), col = c(rep(1, 3), 2))

As before, but with estimates computed at times 0.1, 0.2,..., 1
S2 <- latency(x, t, d, data, x0 = x0, h = c(.5, 1, 2), local = FALSE,
testimate = .1*(1:10))

... (b) with local bandwidth 2.
S3 <- latency(x, t, d, data, x0 = x0, h = 2, local = TRUE)
Note that with only one covariate value the results with
'local = FALSE' and 'local = TRUE' coincide, but the output formats
differ slightly. Compare with
S3 <- latency(x, t, d, data, x0 = x0, h = 2, local = FALSE)

... (c) with local bootstrap bandwidth
b <- latencyhboot(x, t, d, data, x0 = x0)
S4 <- latency(x, t, d, data, x0 = x0, h = b$h)

... (d) when the bandwidth is not specified, the bootstrap bandwidth
selector given by the 'latencyhboot' function is used by default.
The computation of 95% confidence intervals based on 1999 bootstrap
resamples is also illustrated
S5 <- latency(x, t, d, data, x0 = x0, conflevel = .95, bootpars =
controlpars(B = 1999))
plot(S5$testim, S5$S$x0, type = "s", xlab = "Time", ylab = "Latency",
ylim = c(0, 1))
lines(S5$testim, S5$conf$x0$lower, type = "s", lty = 2)
lines(S5$testim, S5$conf$x0$upper, type = "s", lty = 2)
lines(S5$testim, pweibull(S5$testim, shape = .5*(x0 + 4), lower.tail =
FALSE), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"), lty = c(1,
2, 1), col = c(1, 1, 2))

Example with the dataset 'bmt' of the 'KMsurv' package
to study the survival of the uncured patients aged 25 and 40
data("bmt", package = "KMsurv")
x0 <- c(25, 40)
S <- latency(z1, t2, d3, bmt, x0 = x0, conflevel = .95)
Plot of predicted latency curves and confidence intervals
plot(S$testim, S$S$x25, type = "s", xlab = "Time (days)",
ylab = "Latency", ylim = c(0,1))
lines(S$testim, S$conf$x25$lower, type = "s", lty = 2)
lines(S$testim, S$conf$x25$upper, type = "s", lty = 2)
lines(S$testim, S$S$x40, type = "s", lty = 1, col = 2)
lines(S$testim, S$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S$testim, S$conf$x40$upper, type = "s", lty = 2, col = 2)

16 latencyhboot

legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",
"Age 40: Estimate","Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

latencyhboot Compute the Bootstrap Bandwidth for the Nonparametric Estimator
of the Latency

Description

This function computes the bootstrap bandwidth for the nonparametric estimator of the conditional
latency function.

Usage

latencyhboot(x, t, d, dataset, x0, bootpars = controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator in the data frame.

dataset An optional data frame in which the variables named in x, t and indicator
are interpreted. If it is missing, x, t and indicator must be objects of the
workspace.

x0 A numeric vector of covariate values where the local bootstrap bandwidth will
be computed.

bootpars A list of parameters controlling the process of bandwidth selection. The default
is the value returned by the controlpars function called without arguments.

Details

The function computes the bootstrap bandwidth selector for the nonparametric estimator of the con-
ditional latency function at the covariate values given by x0. The bootstrap bandwidth is the mini-
mizer of a bootstrap version of the Mean Integrated Squared Error (MISE) of the latency estimator,
which is approximated by Monte Carlo by simulating a large number of bootstrap resamples, B. For
each value of x0, the bootstrap MISE is the bootstrap expectation of the integrated difference be-
tween the value of the latency estimator computed with the bootstrap sample in a grid of bandwidths

latencyhboot 17

and its value computed with the original sample and a pilot bandwidth. The bootstrap resamples
are generated by using the simple weighted bootstrap resampling method, fixing the covariate. This
method is equivalent to the simple weighted bootstrap of Li and Datta (2001). All the parameters
typically involved in the bootstrap bandwidth selection process (number of bootstrap resamples,
grid of bandwidths, pilot bandwidth, and right boundary of the integration interval for comput-
ing the MISE) are typically set through the controlpars function, whose output is passed to the
bootpars argument. Also, the bootstrap bandwidths can be smoothed, and, if so, the smoothed
bandwidths are returned as a separate component of the output. See the help of controlpars for
details.

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant character string c("Bootstrap bandwidth", "latency").

x0 Grid of covariate values.

h Selected local bootstrap bandwidths.

hsmooth Smoothed selected local bootstrap bandwidths (optional)

hgrid Grid of bandwidths used (optional).

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Li, G., Datta, S. (2001). A bootstrap approach to nonparametric regression for right censored data.
Annals of the Institute of Statistical Mathematics, 53: 708–729. https://doi.org/10.1023/A:
1014644700806.

López-Cheda, A., Jácome, M. A., Cao, R. (2017). Nonparametric latency estimation for mixture
cure models. TEST, 26: 353–376. https://doi.org/10.1007/s11749-016-0515-1.

See Also

controlpars, latency

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1007/s11749-016-0515-1

18 latencyhboot

A vector of covariate values
vecx0 <- seq(-1.5, 1.5, by = .1)

Computation of bootstrap local bandwidths at the values of 'vecx0'...
... with the default control parameters
hb1 <- latencyhboot(x, t, d, data, x0 = vecx0)

... changing the default 'bootpars' with 'controlpars()':
(a) 'B = 1999' (1999 bootstrap resamples are generated),
(b) 'hbound = c(.2, 4)' and 'hl = 50' (a grid of 50 bandwidths
between 0.2 and 4 times the standardized interquartile range of
the covariate values is built), and
(c) 'hsave = TRUE' (the grid bandwidths are saved), and

hb2 <- latencyhboot(x, t, d, data, x0 = vecx0, bootpars =
controlpars(B = 1999, hbound = c(.2, 4), hl = 50, hsave = TRUE))

Estimates of the conditional latency at the covariate value x0 = 0
with the selected bootstrap bandwidths
S1 <- latency(x, t, d, data, x0 = 0, h = hb1$h[hb1$x0 == 0])
S2 <- latency(x, t, d, data, x0 = 0, h = hb2$h[hb2$x0 == 0])

A plot comparing the estimates with bootstrap bandwidths obtained
with default and non-default 'bootpars'
plot(S1$testim, S1$S$x0, type = "s", xlab = "Time", ylab = "Latency",
ylim = c(0, 1))
lines(S2$testim, S2$S$x0, type = "s", lty = 2)
lines(S1$testim, pweibull(S1$testim, shape = .5*(0 + 4), lower.tail =
FALSE), col = 2)
legend("topright", c("Estimate with 'hb1'", "Estimate with 'hb2'",
"True"), lty = c(1, 2, 1), col = c(1, 1, 2))

Example with the dataset 'bmt' of the 'KMsurv' package
to study the survival of the uncured patients aged 25 and 40
data("bmt", package = "KMsurv")
x0 <- c(25, 40)
hb <- latencyhboot(z1, t2, d3, bmt, x0 = x0, bootpars = controlpars(B =
1999, hbound = c(.2, 4), hl = 150, hsave = TRUE))
S0 <- latency(z1, t2, d3, bmt, x0 = x0, hb$h, conflevel = .95)
Plot of predicted latency curves and confidence bands
plot(S0$testim, S0$S$x25, type = "s", xlab = "Time (days)",
ylab = "Survival", ylim = c(0,1))
lines(S0$testim, S0$conf$x25$lower, type = "s", lty = 2)
lines(S0$testim, S0$conf$x25$upper, type = "s", lty = 2)
lines(S0$testim, S0$S$x40, type = "s", lty = 1, col = 2)
lines(S0$testim, S0$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S0$testim, S0$conf$x40$upper, type = "s", lty = 2, col = 2)
legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",
"Age 40: Estimate", "Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

print.npcure 19

print.npcure Print Method for Objects of Class ’npcure’

Description

This function implements a print method for ’npcure’ objects.

Usage

S3 method for class 'npcure'
print(x, how, head = FALSE, ...)

Arguments

x An object of class ’npcure’.

how A character string with values "wide" or "long". If missing, the function itself
chooses a convenient default.

head A logical value that controls whether the function’s output must be abbreviated
(TRUE) or not (FALSE, the default).

... Further optional arguments. Excepting for n, which controls how many lines are
printed when head = TRUE, these are the arguments for the default method (i.e.,
print.default) of the print generic function.

Value

A formatted output.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

See Also

summary.npcure

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

20 probcure

Calling 'print()' with an object of class 'npcure' created by
'latency()'
S1 <- latency(x, t, d, data, x0 = c(0, .5), h = c(1, 1.5))

In this case (latency estimation with local bandwidths and without
confidence bands), the 'wide' format is used by default
S1
print(S1, how = "wide")
print(S1, how = "long")

How to control the number of significant digits of the output, and
how to abbreviate the output
print(S1, digits = 5, head = TRUE, n = 4)

Calling 'print()' with a 'npcure' object created by 'probcure()'
q1 <- probcure(x, t, d, data, x0 = c(0, .5), h = c(.5, 1, 1.5), local =
FALSE, conflevel = .95)

Only the 'long' format is available when confidence bands are
computed
q1
print(q1, how = "long")
print(q1, how = "wide")

probcure Compute Nonparametric Estimator of the Conditional Probability of
Cure

Description

This function computes the nonparametric estimator of the conditional probability of cure proposed
by Xu and Peng (2014).

Usage

probcure(x, t, d, dataset, x0, h, local = TRUE, conflevel = 0L,
bootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

probcure 21

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator in the data frame.

dataset An optional data frame in which the variables named in x, t and d are inter-
preted. If it is missing, x, t and d must be objects of the workspace.

x0 A numeric vector of covariate values where the estimates of cure probability
will be computed.

h A numeric vector of bandwidths. If it is missing the default is to use the local
bootstrap bandwidth computed by the probcurehboot function.

local A logical value, TRUE by default, specifying whether local or global bandwidths
are used.

conflevel A value controlling whether bootstrap confidence intervals (CI) of the cure prob-
ability are to be computed. With the default value, 0L, the CIs are not computed.
If a numeric value between 0 and 1 is passed, it specifies the confidence level of
the CIs.

bootpars A list of parameters controlling the bootstrap when computing either the CIs of
the cure probability or the bootstrap bandwidth (if h is missing): B, the number
of bootstrap resamples, and nnfrac, the fraction of the sample size that deter-
mines the order of the nearest neighbor used for choosing a pilot bandwidth.
The default is the value returned by the controlpars function called without
arguments. If the CIs are not computed and h is not missing the default is NULL.

Details

The function computes the nonparametric estimator of the conditional cure probability q(X =
x0) ≡ 1 − p(X = x0) = P (Y = ∞|X = x0) proposed by Xu and Peng (2014), and also studied
by López-Cheda et al (2017). It is only available for a continuous covariate X .

Value

An object of S3 class ’npcure’. Formally, a list of components:

estimate The constant string "cure".

local The value of the local argument.

h The value of the h argument, unless this is missing, in which case its value is
that of the bootstrap bandwidth.

x0 The value of the x0 argument.

q A list with the estimates of the probability of cure.

conf A list of components lower and upper giving the lower and the upper limits of
the confidence intervals, respectively.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

22 probcure

References

López-Cheda, A., Cao, R., Jácome, M. A., Van Keilegom, I. (2017). Nonparametric incidence
estimation and bootstrap bandwidth selection in mixture cure models. Computational Statistics &
Data Analysis, 105: 144–165. https://doi.org/10.1016/j.csda.2016.08.002.

Xu, J., Peng, Y. (2014). Nonparametric cure rate estimation with covariates. The Canadian Journal
of Statistics 42: 1-17. https://doi.org/10.1002/cjs.11197.

See Also

controlpars, probcurehboot

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = 0.5 * (x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Covariate values where cure probability is estimated
x0 <- seq(-1.5, 1.5, by = 0.1)

Nonparametric estimates of cure probability at 'x0'...

... (a) with global bandwidths 1, 1.5, 2
q1 <- probcure(x, t, d, data, x0 = x0, h = c(1, 1.5, 2), local = FALSE)

Plot predicted cure probabilities at 'x0' for each bandwidth in 'h'
(the true cure probability is displayed for reference)
plot(q1$x0, q1$q$h1, type = "l", xlab = "Covariate", ylab =
"Cure probability", ylim = c(0, 1))
lines(q1$x0, q1$q$h1.5, lty = 2)
lines(q1$x0, q1$q$h2, lty = 3)
lines(q1$x0, 1 - exp(2*q1$x0)/(1 + exp(2*q1$x0)), col = 2)
legend("topright", c(paste("Estimate, ", c("h = 1", "h = 1.5",
"h = 2")), "True"), lty = c(1, 2, 3, 1), col = c(1, 1, 1, 2))

... (b) with local bandwidths (default)
(the vectors passed to 'x0' and 'h' must have the same length)
q2 <- probcure(x, t, d, data, x0 = x0, h = seq(1, 2.5, along = x0))

... (c) with local bootstrap bandwidths (based on 1999 booostrap
resamples). Besides, 95% confidence intervals are computed and
smoothed (with a 15-th order moving average)
set.seed(1) ## Not needed, just for reproducibility.

https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1002/cjs.11197

probcurehboot 23

hb <- probcurehboot(x, t, d, data, x0 = x0, bootpars = controlpars(B =
1999, hsmooth = 15))
q3 <- probcure(x, t, d, data, x0 = x0, h = hb$hsmooth, conflevel = .95,
bootpars = controlpars(B = 1999))

... (d) If the bandwidth is not specified, the local bootstrap
bandwidth is used (same results as in (c))
set.seed(1) ## Not needed, just for reproducibility.
q4 <- probcure(x, t, d, data, x0 = x0, conflevel = .95, bootpars =
controlpars(B = 1999, hsmooth = 15))

Plot of the estimated cure probabilities evaluated at 'x0'
(true cure rate displayed as reference)
plot (q4$x0, q4$q, type = "l", ylim = c(0, 1), xlab = "Covariate X",
ylab = "Cure probability")
lines(q4$x0, q4$conf$lower, lty = 2)
lines(q4$x0, q4$conf$upper, lty = 2)
lines(q4$x0, 1-exp(2 * q4$x0)/(1 + exp(2 * q4$x0)), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),
lty = c(1, 2, 1), col = c(1, 1, 2))

Example with the dataset 'bmt' in the 'KMsurv' package
to study the probability of cure as a function of the age (z1).
data("bmt", package = "KMsurv")
x0 <- seq(quantile(bmt$z1, .05), quantile(bmt$z1, .95), length.out = 100)
q.age <- probcure(z1, t2, d3, bmt, x0 = x0, conflevel = .95, bootpars =
controlpars(B = 1999, hsmooth = 10))

Plot of estimated cure probability and confidence intervals
par(mar = c(5, 4, 4, 5) + .1)
plot(q.age$x0, q.age$q, type = "l", ylim = c(0, 1), xlab =
"Patient age (years)", ylab = "Cure probability")
lines(q.age$x0, q.age$conf$lower, lty = 2)
lines(q.age$x0, q.age$conf$upper, lty = 2)
The estimated density of age (z1) is added for reference
par(new = TRUE)
d.age <- density(bmt$z1)
plot(d.age, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = 2,
main = "", zero.line = FALSE)
mtext("Density", side = 4, col = 2, line = 3)
axis(4, ylim = c(0, max(d.age$y)), col = 2, col.axis = 2)
legend("topright", c("Estimate", "95% CI limits", "Covariate density"),
lty = c(1, 2, 1), col = c(1, 1, 2))

probcurehboot Compute the Bootstrap Bandwidth for the Nonparametric Estimator
of the Cure Probability

24 probcurehboot

Description

This function computes the bootstrap bandwidth for the nonparametric estimator of the conditional
probability of cure.

Usage

probcurehboot(x, t, d, dataset, x0, bootpars = controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator in the data frame.

dataset An optional data frame in which the variables named in x, t and indicator
are interpreted. If it is missing, x, t and indicator must be objects of the
workspace.

x0 A numeric vector of covariate values where the local bootstrap bandwidth will
be computed.

bootpars A list of parameters controlling the process of bandwidth selection. The default
is the value returned by the controlpars function called without arguments.

Details

The function computes the bootstrap bandwidth selector for the nonparametric estimator of the cure
probability at the covariate values given by x0. The bootstrap bandwidth is the minimizer of a boot-
strap version of the Mean Squared Error (MSE) of the cure rate estimator, which is approximated
by Monte Carlo by simulating a large number, B, of bootstrap resamples. The bootstrap MSE is
the bootstrap expectation of the difference between the value of the cure rate estimator computed
with the bootstrap sample in a grid of bandwidths and its value computed with the original sample
and a pilot bandwidth. The bootstrap resamples are generated by using the simple weighted boot-
strap resampling method, fixing the covariate. This method is equivalent to the simple weighted
bootstrap of Li and Datta (2001). All the parameters involved in the bootstrap bandwidth selection
process (number of bootstrap resamples, grid of bandwidths, and pilot bandwidth) are typically set
through the controlpars function, whose output is passed to the bootpars argument. See the help
of controlpars for details.

Given the local nature of bootstrap bandwidth selection, estimates obtained from sets of bootstrap
bandwidths may sometimes look wiggly. To counter this behavior, the selected vector of bootstrap
bandwidths can be smoothed by computing a moving average (its order being set by controlpars).
Then, the smoothed bandwidths are contained in the hsmooth component of the returned value.

probcurehboot 25

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant character string c("Bootstrap bandwidth", "cure").

x0 Grid of covariate values.

h Selected local bootstrap bandwidths.

hsmooth Smoothed selected local bootstrap bandwidths (optional)

hgrid Grid of bandwidths used (optional).

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Li, G., Datta, S. (2001). A bootstrap approach to nonparametric regression for right censored data.
Annals of the Institute of Statistical Mathematics, 53: 708-729. https://doi.org/10.1023/A:
1014644700806.

López-Cheda, A., Cao, R., Jácome, M. A., Van Keilegom, I. (2017). Nonparametric incidence
estimation and bootstrap bandwidth selection in mixture cure models. Computational Statistics &
Data Analysis, 105: 144–165. https://doi.org/10.1016/j.csda.2016.08.002.

See Also

controlpars, probcure

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

A vector of covariate values
vecx0 <- seq(-1.5, 1.5, by = .1)

Computation of bootstrap local bandwidth at the values of 'vecx0'...
... with the default control parameters
set.seed(1) ## Not needed, just for reproducibility.
hb1 <- probcurehboot(x, t, d, data, x0 = vecx0)

... changing the default 'bootpars' through 'controlpars()', with

https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1016/j.csda.2016.08.002

26 summary.npcure

arguments:
(a) 'B = 1999' (1999 bootstrap resamples are generated),
(b) 'hbound = c(.2, 4)' and 'hl = 50' (a grid of 50 bandwidths
between 0.2 and 4 times the standardized interquartilic range of
the covariate values is built),
(c) 'hsave = TRUE' (the grid bandwidths are saved), and
(d) 'hsmooth = 7' (the bootstrap bandwidths are smoothed by a
moving average of 7-th order)
set.seed(1) ## Not needed, just for reproducibility.
hb2 <- probcurehboot(x, t, d, data, x0 = vecx0, bootpars =
controlpars(B = 1999, hbound = c(.2, 4), hl = 50, hsave = TRUE, hsmooth
= 7))

Estimates of the conditional probability of cure at the covariate
values of 'vecx0' with the selected bootstrap bandwidths
q1 <- probcure(x, t, d, data, x0 = vecx0, h = hb1$h)
q2 <- probcure(x, t, d, data, x0 = vecx0, h = hb2$h)
q2sm <- probcure(x, t, d, data, x0 = vecx0, h = hb2$hsmooth)

A plot comparing the estimates obtained with the bootstrap bandwidths
plot(q1$x0, q1$q, type = "l", xlab = "Covariate", ylab =
"Cure probability", ylim = c(0,1))
lines(q2$x0, q2$q, type = "l", lty = 2)
lines(q2sm$x0, q2sm$q, type = "l", lty = 3)
lines(q1$x0, 1 - exp(2*q1$x0)/(1 + exp(2*q1$x0)), col = 2)
legend("topright", c("Estimate with 'hb1'", "Estimate with 'hb2'",
"Estimate with 'hb2' smoothed", "True"), lty = c(1, 2, 3, 1), col = c(1,
1, 1, 2))

Example with the dataset 'bmt' of the 'KMsurv' package
to study the probability of cure as a function of the age (z1).
data("bmt", package = "KMsurv")
x0 <- seq(quantile(bmt$z1, .05), quantile(bmt$z1, .95), length.out =
100)
This might take a while
hb <- probcurehboot(z1, t2, d3, bmt, x0 = x0, bootpars =
controlpars(B = 1999, hbound = c(.2, 2), hl = 50, hsave = TRUE, hsmooth
= 10))
q.age <- probcure(z1, t2, d3, bmt, x0 = x0, h = hb$h)
q.age.smooth <- probcure(z1, t2, d3, bmt, x0 = x0, h = hb$hsmooth)

Plot of estimated cure probability
plot(q.age$x0, q.age$q, type = "l", ylim = c(0, 1), xlab =
"Patient age (years)", ylab = "Cure probability")
lines(q.age.smooth$x0, q.age.smooth$q, col = 2)
legend("topright", c("Estimate with h bootstrap",
"Estimate with smoothed h bootstrap"), lty = 1, col = 1:2)

summary.npcure Summary Method for Objects of Class ’npcure’

summary.npcure 27

Description

This function prints a summary of a ’npcure’ object.

Usage

S3 method for class 'npcure'
summary(object, ...)

Arguments

object An object of class ’npcure’.

... Further optional arguments for the default method (i.e., summary.default) of
the summary generic function.

Value

A compact summary showing the components of the object.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

See Also

print.npcure

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Calling 'summary()' with an object of class 'npcure' created by
'latency()'
S1 <- latency(x, t, d, data, x0 = c(0, .5), h = c(1, 1.5))
summary(S1)

If needed, the number of significant digits of the output can be set
summary(S1, digits = 5)

Calling 'summary()' with an object created by 'probcure()'
q1 <- probcure(x, t, d, data, x0 = c(0, .5), h = c(.5, 1, 1.5), local =
FALSE, conflevel = .95)

28 testcov

summary(q1)

testcov Covariate Significance Test of the Cure Probability

Description

This function carries out a significance test of covariate effect on the probability of cure.

Usage

testcov(x, t, d, dataset, bootpars = controlpars())

Arguments

x If dataset is missing, an object giving the covariate values, whose type can be
numeric, integer, factor or character. Ifdataset is a data frame, it is interpreted
as the name of the variable corresponding to the covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator.

dataset An optional data frame in which the variables named in x, t and d are inter-
preted. If it is missing, x, t and d must be objects of the workspace.

bootpars A list of parameters controlling the test. Currently, the only accepted component
is B, the number of bootstrap resamples. The default is the value returned by the
controlpars function called without arguments.

Details

The function computes a statistic, based on the method by Delgado and González-Manteiga (2004),
to test whether a covariate X has an effect on the cure probability (H1: cure probability = q(x))
or not (H0: cure probability = q). Since the cure rate can be written as the regression function
E(ν|X = x) = q(x), where ν is the cure indicator, the procedure is carried out as a significance
test in nonparametric regression. The challenge of the test is that the cure indicator ν is only partially
observed due to censoring: for the uncensored observations ν = 0, but it is unknown if a censored
individual will be eventually cured or not (ν unknown). The approach consists in expressing the
cure rate as a regression function with another response, not observable but estimable, say η. The
estimated values of η depend on suitable estimates of the conditional distribution of the censoring
variable and τ(x), an unknown time beyond which a subject could be considered as cured; see
López-Cheda (2018). For the computation of the values of η, the censoring distribution is estimated
unconditionally using the Kaplan-Meier product-limit estimator. The time τ is estimated by the
largest uncensored time.

testcov 29

The test statistic is a weighted mean of the difference between the observations of ηi and the values
of the conditional mean of η under the null hypothesis:

Tn(x) = 1/n
∑

(ηi − η̄)I(xi ≤ x)

.

For a qualitative covariate there is no natural way to order the values xi. In principle, this makes
impossible to compute the indicator function in the test statistic. The problem is solved by consid-
ering all the possible combinations of the covariate values, and by computing the test statistic for
each ’ordered’ combination. Tn(x) is taken as the largest value of these test statistics.

The distribution of the test statistic under the null hypothesis is approximated by bootstrap, using
independent naive resampling.

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant character string c("test", "Covariate").

x The name of the covariate.

CM The result of the Cramer-von Mises test: a list with components statistic, the
test statistic, and pvalue, the p-value.

KS The result of the Kolmogorov-Smirnov test: a list with components statistic,
the test statistic, and pvalue, the p-value.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Delgado M. A., González-Manteiga W. (2001). Significance testing in nonparametric regression
based on the bootstrap. Annals of Statistics, 29: 1469-1507.

López-Cheda A. (2018). Nonparametric Inference in Mixture Cure Models. PhD dissertation,
Universidade da Coruña. Spain.

See Also

controlpars

Examples

Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)

30 testmz

t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)

Test of the significance of the covariate 'x'
testcov(x, t, d, data)

Test carried out with 1999 bootstrap resamples (the default is 999)
testcov(x, t, d, data, bootpars = controlpars(B = 1999))

How to apply the test repeatedly when there is more than one
covariate...
... 'y' is another continuous covariate of the data frame 'data'
data$y <- runif(n, -1, 1)
namecovar <- c("x", "y")
... testcov is called from a 'for' loop
for (i in 1:length(namecovar)) {

result <- testcov(data[, namecovar[i]], data$t, data$d)
print(result)

}

In the previous example, testcov() was called without using the
argument 'dataset'. To use it, the 'for' must be avoided
testcov(x, t, d, data)
testcov(y, t, d, data)

Non-numeric covariates can also be tested...
... 'z' is a nominal covariate of the data frame 'data'
data$z <- rep(factor(letters[1:5]), each = n/5)
testcov(z, t, d, data)

Example with the dataset 'bmt' in the 'KMsurv' package
to study the effect on the probability of cure of...
... (a) a continuous covariate (z1 = age of the patient)
data("bmt", package = "KMsurv")
set.seed(1) ## Not needed, just for reproducibility.
testcov(z1, t2, d3, bmt, bootpars = controlpars(B = 4999))

... (b) a qualitative covariate (z3 = patient gender)
set.seed(1) ## Not needed, just for reproducibility.
testcov(z3, t2, d3, bmt, bootpars = controlpars(B = 4999))

testmz Test of Maller-Zhou

Description

This function carries out the nonparametric test of Maller and Zhou (1992).

testmz 31

Usage

testmz(t, d, dataset)

Arguments

t If dataset is missing, a numeric object giving the the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable correspond-
ing to the uncensoring indicator.

dataset An optional data frame in which the variables named in x, t and d are inter-
preted. If it is missing, x, t and d must be objects of the workspace.

Details

The function implements Maller and Zhou’s (1992) method to test the null hypothesis H0 : τF0
>

τG vs. H1 : τF0
≤ τG, where τF0

and τG are the supports of, respectively, the distribution function
of the survival time of the uncured and the distribution function of the censoring time.

Value

An object of S3 class ’npcure’. Formally, a list of components:

type The constant character string c("test", "Maller-Zhou").

pvalue The p-value of the test.

aux A list of components: statistic, the test statistic, n the sample size, delta,
the difference between the largest observed time tn and the largest uncensored
time t⋆n, and interval, a vector giving the range between max(0, t⋆n − delta)
and t⋆n.

Author(s)

Ignacio López-de-Ullibarri [aut, cre], Ana López-Cheda [aut], Maria Amalia Jácome [aut]

References

Maller R. A., Zhou S. (1992). Estimating the proportion of immunes in a censored sample. Biometrika,
79: 731-739. https://doi.org/10.1093/biomet/79.4.731.

See Also

latency, probcure

https://doi.org/10.1093/biomet/79.4.731

32 testmz

Examples

Some artificial data
set.seed(123)
n <- 50
y <- qweibull(runif(n)*pweibull(2, shape = 2), shape = 2) ## True lifetimes
c <- qexp(runif(n)*pexp(2.5)) ## Censoring values
u <- runif(n)
Probability of being susceptible is constantly equal to .5
t <- ifelse(u < .5, pmin(y, c), c) ## Observed times
d <- ifelse(u < .5, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(t = t, d = d)

Maller-Zhou test
testmz(t, d, data)

Index

∗ Nonparametric Mixture Cure Model
npcure-package, 2

∗ nonparametric
beran, 3
berancv, 6
latency, 12
latencyhboot, 16
probcure, 20
probcurehboot, 23
testcov, 28
testmz, 30

∗ package
npcure-package, 2

∗ survival
beran, 3
berancv, 6
latency, 12
latencyhboot, 16
probcure, 20
probcurehboot, 23
testcov, 28
testmz, 30

beran, 3, 8, 10
berancv, 5, 6, 10

controlpars, 5, 8, 9, 12, 14, 17, 22, 25, 29

hpilot, 8, 10, 11

latency, 10, 12, 17, 31
latencyhboot, 10, 12, 14, 16

npcure (npcure-package), 2
npcure-package, 2

print.npcure, 19, 27
probcure, 10, 20, 25, 31
probcurehboot, 10, 12, 22, 23

summary.npcure, 19, 26

testcov, 10, 28
testmz, 30

33

	npcure-package
	beran
	berancv
	controlpars
	hpilot
	latency
	latencyhboot
	print.npcure
	probcure
	probcurehboot
	summary.npcure
	testcov
	testmz
	Index

